La ciencia del compost
 
Compostando Ciencia

Reciclaje a altas temperaturas: compostaje hipertermófilo

Lo que nosotros sentimos como mucho calor, para el compost no lo es tanto: una simple fase mesófila. Según sabemos, la temperatura del compostaje puede alcanzar valores de 65-70 °C durante la etapa termófila, donde se produce la mayor actividad biológica y degradación de la matriz orgánica (1). Pero, ¿es este el límite térmico del proceso?, ¿se pueden alcanzar temperaturas superiores? La respuesta a esta última pregunta es que sí. Y es mediante una tecnología muy novedosa que se llama compostaje hipertermófilo.

¿Podemos regenerar suelos quemados con el compost?

Estos son algunos de los muchos ejemplos que podemos encontrar en la literatura científica sobre el beneficio del compost para regenerar suelos degradados tras un incendio. Por desgracia, se ha demostrado que esta recuperación no es inmediata, y se lleva su tiempo, tal y como se observó en un trabajo reciente (5).

Illustraciencia 2022: Compostaje

El compostaje es la principal biotecnología que se emplea para transformar nuestros residuos orgánicos domésticos. Es un proceso biológico donde los microorganismos (en esencia bacterias y hongos) presentes inicialmente en los propios residuos descomponen la materia orgánica de los mismos, transformándolos en un material estable y con propiedades agrícolas denominado compost.

¿Cuanta masa pierde un compost?

Un fenómeno habitual que se produce en el compostaje es la reducción de la masa (y del volumen) de las mezclas orgánicas conforme avanza el tiempo del proceso. Se debe en gran parte a las transformaciones químicas que se generan durante la transformación biológica de la materia orgánica y que liberan a la atmósfera gases como el dióxido de carbono (CO2) u otros similares, tal y como comentamos recientemente.

¿Cómo incrementar los nutrientes de un compost?

El compost es una fuente de materia orgánica, microorganismos beneficiosos y nutrientes para las plantas como el nitrógeno (N), el fósforo (P) y el potasio (K), aunque es habitual que estos últimos estén en concentraciones modestas. Por esta razón, muchos investigadores han estudiado cómo incrementar su contenido y disponibilidad en el compost con el fin de mejorar sus propiedades agronómicas. Dos son las estrategias más habituales para conseguirlo:

Aíslan una bacteria desconocida capaz de consumir el gas invernadero N2O

Investigadores japoneses han aislado del suelo una bacteria no desnitrificante capaz de convertir el N2O a N2, lo que la convierte en una posible estrategia de mitigación de GEIs en la agricultura.

Empezamos nuestro experimento: Elaboración de un abono orgánico casero y uno biológico usando leguminosas

Esta entrada corresponde a la segunda sesión del proyecto de investigación ciudadana CAOS ¿Cómo incrementar la materia orgánica de nuestros suelos? Proyecto Caos. Sesión primera (enero de 2021) de Germán Tortosa   En la sesión de hoy hemos comentado cuales son los principales nutrientes que necesitan las plantas para crecer. …

¿Cuanto cuestan los nutrientes de un compost?

El compostaje permite transformar residuos orgánicos en abonos que pueden usarse en agricultura. Los compost tienen un importante contenido de materia orgánica y nutrientes, como el nitrógeno (N), el fósforo (P) y el potasio (K), aunque su concentración varía en función de los residuos iniciales usados. Estos nutrientes pueden sustituir en parte al abonado mineral, lo que supone cierto ahorro para el agricultor. Pero, ¿de cuanto estamos hablando?

¿Cómo puede el sector agroforestal mitigar el cambio climático?

El pasado 2 de octubre participé en un evento de divulgación científica online en el que tuve la oportunidad de hablar sobre como la agricultura puede ayudar en la mitigación del cambio climático. Aquí está la charla y sus transcripción. Espero que os guste.

Las lombrices de tierra incrementan la actividad microbiana del suelo

En el suelo habitan multitud de seres vivos, algunos muy pequeños y otros no tanto, pero todos en perfecta sintonía. Un ejemplo son las lombrices de tierra, que ayudan a la transformación de los suelos modificando su estructura física, química y biológica. También incrementan la actividad enzimática microbiana relacionada con nutrientes esenciales como el carbono, nitrógeno o el fósforo, creando zonas o «puntos calientes» de actividad biológica.

La promiscuidad de la judía

Phaseolus vulgaris L., más conocida como judía común, habichuela, frijol, poroto o alubia, entre otros nombres, es una planta leguminosa de la familia de las Fabaceae. Aunque es originaria del continente americano, en especial centroamérica y sudamérica, hoy en día se cultiva por todo el planeta, siendo uno de los principales cultivos junto a la soja y los cacahuetes (maní).