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Abstract Diversity of microorganisms involved in the biogeochemi-
cal N cycle is of fundamental interest in microbial ecology. Denitrifica-
tion is a key step in the cycle by which nitrate is reduced to dinitrogen
gas via the soluble nitrite and the gaseous compounds nitric oxide and
nitrous oxide. The process is carried out by the sequential activity of
the nitrate, nitrite, nitric oxide, and nitrous oxide reductase enzyme,
respectively. The fluorescence-based quantitative real-time polymerase
chain reaction (qPCR) is widely used for quantification of nucleic acids
in samples obtained from numerous, diverse sources. Here, we provide
a well-proven methodology for isolation of DNA from environmen-
tal samples and describe relevant experimental conditions for utiliza-
tion of qPCR to assay the 16S rRNA and nar/nap, nirK/nirS, c-nor/q-
nor, and nos denitrification genes that encode synthesis of denitrifying
enzymes. The ISO 11063 standard method and MIQUE guidelines are
considered with the aim to increase experimental transparency.

Keywords environmental samples; denitrifier communities; DNA ex-
traction; DNA purification; DNA quantification; real-time PCR; rela-
tive abundance

1. Introduction

When faced with a shortage of oxygen (O2), many bacte-
rial species are able to switch from O2 respiration to using
nitrate or its derived nitrogen oxides to support respiration
in a process known as denitrification. During this process,
the water-soluble nitrate is converted into gaseous nitrogen-
containing gases. These are the (a) cytotoxic and ozone-
depleting nitric oxide (NO), (b) potent and long-lived green-
house gas nitrous oxide (N2O), and (c) the relatively inert
dinitrogen gas (N2). Because denitrification is performed
by more than 60 bacterial genera, it was believed that the
process would be performed exclusively by bacteria. Now
there are evidences that some fungi [89,111], archaea [118],
and some Foraminifera and Gromiida [86,98] are also able
to denitrify. Moreover, nitrifiers also have genes involved
in denitrification [14,104]. A list of archaeal, bacterial, and
fungal genera for which at least one denitrifying gene has
been reported [84].

2. Genes and enzymes involved in denitrification

Reduction of nitrate to dinitrogen gas is carried out by
the sequential activity of the enzymes nitrate, nitrite, nitric
oxide, and nitrous oxide reductase, encoded by the nar/nap,
nirK/nirS, c-nor/q-nor, and nos genes, respectively.

2.1. Respiratory nitrate reductases

The first reaction of denitrification, the conversion of nitrate
to nitrite, is catalyzed by two biochemically different
enzymes, a membrane-bound nitrate reductase (Nar), or a
periplasmic nitrate reductase (Nap) [reviewed in [35,93,
94,95,121,122]]. Nar is a three-subunit enzyme composed
of NarGHI, where the catalytic subunit NarG and the one
[3Fe-4S] and three [4Fe-4S] NarH subunit are located in
the cytoplasm and associate with NarI whose N-terminus
faces the periplasm. Nar proteins are encoded by genes of
a narGHJI operon. narGHI genes encode the structural
subunits, and narJ codes for a cognate chaperone required
for maturation and membrane insertion of Nar. In some
archaea and bacteria, the NarGH subunits are on the outside
rather than the inside of the cytoplasmic membrane. The Nar
enzyme couples quinol oxidation with proton translocation
and energy conservation, which permits cell growth under
oxygen-limiting conditions [105,137].

Nap is a two-subunit enzyme composed of the NapAB
complex located in the periplasm and a transmembrane
NapC component. NapA is the catalytic subunit, NapB
is a diheme cytochrome c552, and NapC is a c-type tetra-
heme membrane-anchored protein involved in the electron
transfer from the quinol pool to NapAB [reviewed in [35,
88,93,94,95,121,122]]. Up to eight different genes have
been identified as components for operons that encode
perisplasmic nitrate reductases in different organisms.
Most bacteria studied thus far have the napABC genes
in common. The remaining napDEFKL genes encode for
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different proteins that are not directly involved in the nitrate
reduction but in functions required for proper functioning
of the enzyme. Although Nap is also linked to quinol
oxidation, it does not synthesize ATP [105]. Physiological
functions for Nap systems include the disposal of reducing
equivalents during aerobic growth on reduced carbon
substrates and anaerobic nitrate respiration as a part of
bacterial ammonification or denitrification pathways [88].
Escherichia coli has a functional duplicate of the narGHJI
operon named narZYWV, which physiologically has a
function during stress response rather than anaerobic
respiration.

2.2. Respiratory nitrite reductases

Two types of respiratory nitrite reductases (Nir) have been
described in denitrifying bacteria, NirS and NirK [96,
97,122,123]. Both are located in the periplasmic space
and catalyze the one-electron reduction of nitrite to
nitric oxide, and neither of the enzymes is electrogenic.
The best-characterized nirS genes clusters are those
from Pseudomonas aeruginosa (nirSMCFDLGHJEN),
P. denitrificans (nirXISECFDLGHJN), and P. stutzeri
(nirSTBMCFDLGH and nirJEN). The NirK enzymes
contain type I and II copper centers in the active site and
is encoded by the nirK gene [97]. Both Nir enzymes are
widespread among denitrifiers, but no evidence exists that
the same specie could have both enzymes.

2.3. Respiratory nitric oxide reductases

Three types of nitric oxide reductases (Nor) have been
characterized, cNor, qNor, and qCuANor [reviewed in [27,
121,122,123,138]]. The cNor is an integral membrane
enzyme composed of two subunits, the heme c containing-
NorC and NorB, which use cytochrome bc1 complex and a
soluble cytochrome c or pseudoazurin as electron donors.
The qNor uses quinol or menaquinol as electron donors.
The enzyme has been found not only in denitrifying archaea
and soil bacteria but also in pathogenic microorganisms
that do not denitrify [26] and in the Gram-positive
bacterium Bacillus azotoformans [110]. This enzyme is
bifunctional using both menahydroquinone (MKH2) and a
specific c-type cytochrome c551 as electron donor. It was
suggested that the MKH2-linked activity of qCuANor serves
detoxification, and the c551 pathway has a bioenergetics
function. The cNor is encoded by the norCBQD operon.
The norC and norB genes encode subunit II and subunit I,
respectively, and the norQ and norD genes encode proteins
essential for activation of cNor. Some denitrifiers have
additional norEF genes, the products of which are involved
in maturation and/or stability of Nor activity [43]. As a
unique case, the Nor of Roseobacter denitrificans is similar
to cNor but differs in that it contains copper [66].

2.4. Respiratory nitrous oxide reductase

The final step in denitrification consists of the two-electron
reduction of nitrous oxide to N2, a reaction catalyzed
by the nitrous oxide reductase (Nos) located in the
periplasmic space [reviewed in [121,122,123,139]]. Nos is
a homodimer of a 65-kDa copper-containing subunit, where
each monomer is made up of the CuA and CuZ domains.
The nos gene clusters often comprise the nosRZDFYLX
genes. The nosZ gene encodes the monomers of Nos. The
nosDFYL genes encode proteins that are apparently required
for copper assemblage into Nos, although their specific role
still remains unknown. The NosRX proteins have roles in
transcription regulation, activation, and Cu assemblage of
Nos [139].

3. Molecular markers for denitrifying bacteria

Cultivation-dependent and -independent methods have
shown that denitrifiers in soils represents up to 5% of the
total soil microbial community [46,114], reaching a density
of up to 109 cells/g of soil [2,23,47]. Although the diversity
of denitrifiers was studied by isolating bacterial strains [33],
the culture-dependent isolation techniques are limited
because of the fact that only a fraction of the bacterial
community is cultivable. Application of molecular methods
to study microbial diversity in the environment without
cultivation was also used to assess the composition of
denitrifier communities in environmental samples, mainly
soils, waters, and sediments. However, since the ability to
denitrify is sporadically distributed both within and between
different genera and cannot be associated with any specific
taxonomic group, a 16S rRNA phylogeny-based approach
is not possible to study denitrifiers. Therefore, existing
techniques to study the ecology of this bacterial community
are based on the use of functional genes in the denitrifi-
cation pathway, or their transcripts, as molecular markers
[reviewed in [41,81,83]]. Accordingly, DNA extraction fol-
lowed by PCR amplification of denitrification genes is cur-
rently the most common way to quantify the denitrifier com-
munities. For this purpose, utilization of reliable primers that
allow amplification of the target genes is required. The nirK,
nirS, and nosZ genes were the first denitrification genes to
be partially amplified [7,42,70,101,133]; and primers
were also developed for amplification of the narG, napA,
and nosB genes [8,17,31,37,85]. With the exponential
increase in the databases of the amount of DNA sequences
corresponding to denitrification genes, new primers were
developed with broader amplification range, including
nirK [45], nirS [113], nosZ [46], narG [59], and napA [11].
A list of commonly used PCR primers for denitrification
genes has been published [41]. It is expected that genome
sequencing and metagenomic projects will provide new
denitrification gene sequences, which could aid in designing
new primersprimers as recently demonstrated [52].
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4. PCR-independent analyses of denitrifier communities

4.1. Immunological assays

The structure and abundance of active denitrifiers can be
determined by targeting proteins encoded by any of the
denitrification genes. Antibodies have been used to detect
NirK and NirS reductases in isolated denitrifiers [22,69,
127]. After removal of the antibody-labeled cells using flow
cytometry, the phylogenetic affiliation of the population
could be determined with 16S rRNA oligonucleotide probes.
The membrane-bound NarG nitrate reductase was also
proposed as a target for quantification of cells isolated from
soils [63]. Although the presence of a denitrifying enzyme
indicates the presence of the corresponding activity, such an
activity can vary among the different species of denitrifiers.
Stability of denitrifying enzymes in environmental samples
is not well known as it is the time an enzyme may be
detected after disappearance of its substrate.

4.2. DNA microarrays

Quantification of microbial communities can be approached
using DNA microarrays based on DNA-DNA hybridization.
For denitrifying bacteria, oligomer microarrays of different
molecular sizes have been developed for assessing narG,
nirK, nirS, and nosZ diversity and distribution [18,68,112,
115,131]. Microarray-based whole-genome hybridization
has also been used as a technique to detect and identify
microorganisms in environmental samples [132]. An
environmental functional gene microarray to profile
microbial gene transcripts was useful for assessing
functional attributes of microbial communities [67].

5. PCR-dependent analyses of denitrifier communities

5.1. Fingerprinting of denitrifier communities

Several techniques have been described to resolve PCR-
amplified denitrification genes. Cloning and sequencing
of the PCR amplicons offer detailed information, but more
rapid analysis can be achieved using fingerprinting methods.
PCR-restriction fragment length polymorphism (PCR-
RFLP), terminal restriction fragment length polymorphism
(T-RFLP), denaturing gradient gel electrophoresis (DGGE),
and temperature gradient gel electrophoresis (TGGE) have
been used to obtain information on the predominant popu-
lations in the denitrifier communities. All these techniques
separate PCR amplicons of the same size on the basis of
their nucleotide-sequence polymorphism. Comprehensive
reviews on molecular methods to assess diversity of denitri-
fying bacteria have been published [41,83,103]. Based on
the number of peaks or bands and on their relative intensity,
these techniques can give estimates of both richness and
evenness, but estimation of the total number of denitrifiers
is neglected. To circumvent this problem, competitive PCR
(cPCR) and quantitative real-time PCR (qPCR) can be used.

According to MIQUE guidelines [12], the initials RT-qPCR
should be used for reverse transcription-qPCR.

5.2. Quantification by PCR of denitrifier communities:
cPCR and qPCR

PCR can be used for enumeration of denitrifiers using den-
itrifying genes as molecular markers. Both cPCR and qPCR
technologies rely on the direct proportionality between
the intensity of the fluorescent signal measured during the
exponential phase of the PCR reaction and the initial amount
of target DNA. The copy number of initial target DNA is
thereby determined by comparison to a standard curve
constructed using target DNA of a known concentration.
Although most denitrification genes so far studied are
present in single copies within bacterial genomes, narG and
nosZ can be present in more than one copy [53,85].

Competitive PCR (cPCR) is based on the simultaneous
amplification of the target DNA and a control DNA with
a known concentration, the so-called competitor. They
compete for the primers during amplifications. Because
the method assumes that both DNAs have the same
amplification efficiency, the mass ratio between the two
amplicons can be used to determine the initial amount of
target DNA. This ratio is estimated by agarose gel analysis
of PCRs of multiple dilutions of the competitor with the
target DNA. This method has been used for quantification
of cytochrome cd1-denitrifying bacteria in environmental
marine samples [70]. cPCR has also been used to quantify
the nirK gene in soil and stream-sediment samples [90]
and the nirK and nirS genes in membrane-aerated biofilms
at different depths [20]. Some drawbacks of this method
are its limited dynamic range, the need to screen multiple
dilutions, and the requirement for a gel migration step.

Amplification of the nirS gene by quantitative PCR
(qPCR) was first shown in 2001 [39]. In their experiments,
they used the TaqMan technology and designed primers
for the Pseudomonas stutzeri nirS gene. Due to the
high specificity of this system, the primer-probe set
was specific for nirS sequences that correspond only to
P. stutzeri and, therefore, was of limited utility. SYBR
Green is a fluorescent dye that binds non-specifically to
double-stranded DNA. During PCR, the intensity of the
fluorescence is detected, which results in a logarithmic
increase in emission of fluorescence until the reagent
become limiting. The cycle number of the PCR at which the
fluorescent signal crosses the threshold receives different
names: threshold cycle (Ct), take-off point (TOP), crossing
point (Cp), and quantification cycle (Cq). The MIQE
Guidelines [12] propose the use of the latter name for
describing the fractional PCR cycle used for quantification.
Because there is a positive correlation between the log of the
initial DNA template concentration and the corresponding
Cq, if one knows the starting amount of target DNA, a
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standard curve can be constructed by plotting Cq as a
function of the log of the copy number of the target DNA.
The gene copy number in the DNA sample can then be
determined based on its Cq. The PCR efficiency of the
reaction, as indicated by the slope of the curve as well as
the lack of PCR inhibition has to be checked. Dilutions of
extracted DNA or addition of a given amount of control
DNA to environmental DNA can be used for verification.

qPCR does not require a gel migration step, is highly
reproducible and sensitive, and is less expensive, laborious
and time-consuming than cPCR. Reviews dealing with the
advantages and limitations of qPCR have been published [9,
107,135]. Accordingly, qPCR is currently the main method
used for quantification of environmental samples, including
the denitrifier communities.

Because RNA provides evidence of gene expression,
qPCR techniques based on RNA extracted directly from
environmental samples can be retro-transcribed to cDNA
and used for qPCR. After reverse transcription, the narG,
napA, nirK, nirS, and nosZ genes were quantified by
standard qPCR [74]. Quantification of the nosZ was also
achieved using cDNA, but nirS and nirK genes could not be
amplified [25]. Using cDNA from an agricultural soil, the
nosZ and nirSp (nirS from Pseudomonas mandelii) genes
were quantified by qPCR, but amplification of the nirK and
nirS from the total soil community, or their transcripts, was
not obtained even when different primers, PCR conditions
and cycling parameters were used [44]. As for all PCR-
based techniques, qPCRs are subjected to well-known
biases introduced by, e.g., DNA extraction procedures,
primer selection, and PCR conditions.

6. DNA extraction from environmental samples

A conventional approach to evaluate the abundances of deni-
trifiers in environmental samples include (a) DNA extraction
and purification, (b) PCR’s inhibition tests, (c) Target gene
quantification by qPCR, and (d) analysis of the obtained
results. In this review, the term environmental sample refers
mainly to soil and sediment samples.

6.1. Initial attempts for DNA isolation

Pioneer methods for soil DNA isolation used ex situ method-
ologies that included long incubations of soils in a solu-
tion made of sodium cholate and Chelex 100 resin, followed
by centrifugation and passage through a Percoll gradient
to separate the most dense soil particles from the floating
organic matter and microorganisms [48,117]. Further break-
age of the cells by sonication and differential centrifugation
allowed DNA extraction. Later, it was shown that the DNA
samples obtained by this methodology were not representa-
tive of the entire DNA in the soil samples [56,108].

First approaches to total soil DNA isolation from
environmental samples were developed by several authors

using mechanical and enzymatic lysis, followed by cleaning
of the crude extract and DNA precipitation. Accordingly,
soils were treated with a high salt concentration-extraction
buffer containing hexadecyl-trimethyl ammonium bromide
(CTAB) and proteinase K. Samples were further incubated
with sodium dodecyl sulfate (SDS), mixed with a mixture
of clorophorm/isoamyl alcohol (24:1), precipitated with
isopropanol, washed with 70% ethanol, and, finally,
resuspended in milliQ (MQ) water [136]. This methodology
was improved to simultaneously recover RNA and DNA
from soils and sediments by homogenization of the samples
in a high salt concentration-extraction buffer containing
CTAB and SDS, frozen in liquid nitrogen and ground
until thawed [49]. Other authors homogenized the soil
samples in an extraction buffer containing PVPP and
Chelex 100 resin, extracted the DNA with the same buffer
supplemented with SDS, proteinase K and 10% Sarkosyl,
and purified it with a mixture of phenol/clorophorm/isoamyl
alcohol (25:24:1) [54]. Cell lysis was also achieved using
a long treatment at 68 °C in the presence of SDS and
guanidine isothiocyanate followed by precipitation with
polyethylene glycol (PEG-8000) and purification with
CTAB, chloroform, and ammonium acetate [30,87].

6.2. The ISO standard 11063 Soil quality—method to
directly extract DNA from soil samples

During evaluation of the effectiveness of nine DNA
extraction procedures, homogenization of the samples using
a bead beater disrupter and SDS in the extraction buffer
gave the best results [71]. Based on these data, a method
was developed and published that has been shown to
provide good quantity and quality DNA [65]. In addition to
good reproducibility, the method provided results for DNA
extraction from diverse environmental samples, including
soils from a range of origins and different physical and
chemical characteristics [17,59,64,79,85]. Accordingly,
this method was proposed in 2006 by the Agence Française
pour la Normalisation (AFNOR) to the International Orga-
nization for Standardization (ISO). Because an ISO standard
would give information on the identity and quality of each
compound in the protocol, it would also provide a complete
quality control for users, thus avoiding the risks associated
to commercial kits. After recognition of the need for an
international standard for soil DNA extraction, an action was
formally agreed, and the method was evaluated by 15 inde-
pendent European laboratories, 6 from France and 9 from
other countries including Finland, Germany, Italy, Spain and
Sweden. The amount of DNA extracted from 12 different
soils was compared to evaluate both the reproducibility of
the standardized method and the abundance and genetic
structure of the total bacterial community. Quantification of
the 16S rRNA gene abundances by quantitative PCR (qPCR)
and analysis of the total bacterial community structure by
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automated ribosomal intergenic spacer analysis (A-RISA)
showed acceptable to good levels of reproducibility. The
method has been unanimously approved by the ISO as an
international standard method (ISO standard 11063) [80].
The method has also been used to extract DNA from river
sediments and agricultural soil, waters, biofilms and glacier
soils [10,11], polychlorinated biphenyls-contaminated
sites [79], constructed wetlands [21], and technosols [40].

Essentially, the method is as follows.

(1) Sieve samples to < 2 mm. Weight 0.25 g equivalent dry
weight aliquots in a 2-mL microtube and keep frozen at
−80 °C until use.

(2) Thaw the samples. Add 0.5 g of 106-µm glass beads, 2
beads of 2 mm diameter, and 1 mL of homogenization
buffer extemporaneously prepared (100µL 1 M Tris-
HCl (pH 8.0), 200µL 0.5 M EDTA (pH 8.0), 100µL
1 M NaCl, 50µL 20% PVP 40 T, 100µL 20% SDS,
450µL MQ water).

(3) Homogenize the mixture by using a mini bead beater
system (1.600−1 shaking frequency/min for 30 s). Use
a shaking flask previously kept at −20 °C. Incubate for
10 min at 70 °C then centrifuge at 14.000× g for 1 min
at 4 °C.

(4) Transfer the supernatant to a new 2-mL microtube. Add
1:10 (v/v) 5 M sodium acetate (pH 5.5) and mix by
vortexing. Incubate on ice for 10 min then centrifuge at
14.000×g for 5 min at 4 °C.

(5) Transfer the supernatant to a new 1.5-mL microtube.
Add 1:1 (v/v) prechilled (−20 °C) isopropanol. Mix
well by manual inversion. Incubate for at least 15 min at
−20 °C then centrifuge at 14.000×g for 30 min at 4 °C.

(6) Remove the supernatant. Wash the pellet (containing
the nucleic acids) with prechilled (−20 °C) 70% ethanol
with precaution to avoid pellet resuspension. Centrifuge
for 15 min at 14.000×g at 4 °C.

(7) Discard the supernatant and dry the pellet for 15 min at
37 °C.

(8) Resuspend the pellet in 50µL MQ water.
(9) Prepare sample aliquots and store at −20 °C until use.

7. DNA purification

Because of the presence of PCR-inhibitory compounds in
the environmental samples, DNA purification is recom-
mended. There is to note, however, that DNA purification is
not part of the ISO standard 11063.

7.1. DNA purification through PVPP and sepharose 4B
columns

As a first step of purification, prepare the PVPP column as
follows.

(1) Fill about 1.2 cm of an empty micro-spin chromatogra-
phy column with PVPP powder (about 95 mg) and add
400µL of MQ water.

(2) Place the column in a 1.5-mL tube and centrifuge for
2 min at 1000×g. Discard the eluate. Add 400µL of MQ
water to the column and centrifuge for 2 min at 1000×g.
At this moment, the column can be kept at 4 °C.

(3) Add the 50µL DNA sample to the column and place it
in ice for 5 min.

(4) Place the column into a new tube and centrifuge at
1.000×g for 4 min at 10 °C to recover the DNA sample.
Quantify the final volume of the sample.

Further DNA purification can be obtained by using
sepharose 4B columns as indicated earlier [65,80].

(1) Fill an empty micro-spin chromatography column with
1 mL of sepharose 4B solution.

(2) Place the column in a 2 mL tube and centrifuge for 2 min
at 1.100×g at 10 °C. Discard the eluate.

(3) Add 500µL TE buffer (10 mM Tris and 1 mM EDTA).
At this moment, the column can be kept at 4 °C.

(4) Centrifuge at 1.100× g for 2 min at 10 °C. Discard the
eluate.

(5) Place the column in a new 2- mL tube. Add the DNA
sample and centrifuge at 1.400× g for 5 min at 10 °C.
Quantify the final volume of the sample.

After PVPP cleaning, alternatively to utilization of
sepharose 4B columns, commercial kits can be used for
DNA purification. Here, we described cleaning of DNA
samples using the Geneclean® turbo kit (GLASSMILK®-
embedded membrane, MP Bio). Following manufacturer’s
instructions, the procedure allows purification of DNA
fragments of sizes from 0.1 kb to 300 kb. Essentially,

(1) To the DNA sample (V), add 5 volumes of salt solution
and mix well by vortexing.

(2) Add the mixture to a Geneclean® cartridge and cen-
trifuge at 14.000× g until it all has passed through the
filter.

(3) Add 500µL of the ethanol-containing Geneclean®
washing solution to the cartridge and centrifuge at
14.000 × g for 5 s. Discard the eluate. Recentrifuge
the cartridge at 14.000× g for an additional 4 min and
discard the eluate.

(4) Place the cartridge into a new 1.5-mL tube.
(5) Add 50µL Geneclean® elution solution directly onto

the GLASSMILK®-embedded membrane and incubate
at room temperature 5 min.

(6) Centrifuge at 14.000×g for 1 min. Recover the eluate.

7.2. Other extraction and purification methods

The following methods are used to extract environmental
DNA: (a) cation-exchange [51], (b) nitrogen-grinding [125],
(c) microwave-based rupture [77], (d) Nycodenz gradient
separation [6], (e) solvent-based beating [15], (f) aluminum-
based extraction [78], and (g) calcium chloride [58].
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Table 1: Primers used for PCR amplification of bacterial standard 16S rRNA and denitrification genes.
Primer Primer sequence (5′-3′) Target gene Size of the amplicon (base pair, bp) Reference

T7 TAATACGCATCACTATAGGG
150 Promega Corp.

Sp6 GATTTAGGTGACACTATAG
341F CCTACGGGAGGCAGCAG

16S rRNA∗ 194 [73]
534R ATTACCGCGGCTGCTGGCA
narG-f TCGCCSATYCCGGCSATGTC

narG 174 [11]
narG-r GAGTTGTACCAGTCRGCSGAYTCSG
nap3F TGGACVATGGGYTTYAAYC

napA 152 [11]
napA4R ACYTCRCGHGCVGTRCCRCA
nirK876F ATYGGCGGVAYGGCGA

nirK 173 [45]
nirK1040R GCCTCGATCAGRTTRTGGTT
nirS4QF AACGYSAAGGARACSGG

nirS 425 [113]
nirS6QR GASTTCGGRTGSGTCTTSAYGAA
nosZ1840F CGCRACGGCAASAAGGTSMSSGT

nosZ 267 [46]
nosZ2090R CAKRTGCAKSGCRTGGCAGAA
∗In addition to the abundance, quantification of the 16S rRNA gene allows calculation of the relative abundance of a denitrification gene as the
ratio between the abundance of any denitrification gene and the abundance of the 16S rRNA gene.

In many laboratories, utilization of commercial kits for
DNA isolation is also frequent. Among them are MoBIO
PowerSoil DNA kit (MoBIO) [19,24,62], ultra clean soil
DNA kit (Ozyme, MoBIO) [5,61,99], and fast DNA spin
kit for soil (BIO 101/Q-Biogene) [29,50,55,102].

A combination of hand-made and kit methodologies
have also been used [38,57,109]. This method used a
Bio-101 Multimix 2 matrix tube in combination with the
fast-prep FP120 bead beater disruptor. DNA extraction was
performed with addition of hexadecyl-trimethyl ammonium
bromide (CTAB) to the commercial extraction buffer.

In addition to PVPP, sepharose 4B and Geneclean®
turbo kit DNA, DNA purification can be achieved using:
(a) phenol [119], (b) elutip-d and sephadex G-200 columns
[120], (c) cesium chloride, glassmilk and spearmine [106],
(d) PVPP and Microcon-100 columns, microconcentra-
tors [129], (e) agarose gel electrophoresis [136], (f) HR
S400 spin columns fast DNA purification kit and elution
through Qiagen Mini column [91], (g) Wizard DNA Clean-
Up System [28], (h) AllPrep DNA/RNA mini kit [34].

Although most protocols were originally designed for
DNA extraction from soils and sediments, they have also
been used to isolate and purify DNA from diverse envi-
ronmental samples, such as the rizosphere of plants [99],
biofilms formed on estuarine rocks colonized by algae [61],
the vermicompost from a fresh olive waste [124], soil-
feeding mounds of nematodes or termites [28,30], and a
bioreactor’s biofilm [13]. Isolation and purification of DNA
from aqueous samples usually requires concentration of the
bacterial biomass by filtering the samples through 0.22-µm
membranes and further homogenization of the filters [116].
Thermal shocks do not usually increase DNA yield and, in
turn, may release humic material. This treatment, however,
resulted in extraction of DNA from the Gram-positive
actinomycete Micromonospora [32].

7.3. Checking quantity and quality of the purified DNA

Quantity and quality of the DNA throughout an extraction
process can be estimated by electrophoresis on 1% agarose
gels in 0.5X TBE buffer [100] at 80 V. Samples (4µL) can
be supplemented with 1µL loading buffer (40% sucrose and
0.25% bromophenol blue) before loading the samples on
the gel. After electrophoresis, DNA can be visualized by
staining with ethidium bromide, GelRed, Sybr Green I, etc.
Alternatively, quantification of purified DNA can be deter-
mined by spectrometry at 260 nm. Quality of the samples
can be checked by measuring absorbance of the sample at
230 nm (shows the presence of organic solvents), 280 nm
(indicates the presence of proteins), and 400 nm (suggests
the presence of humic acid).

8. Preparation of standard DNAs for qPCR
Standard DNAs were obtained after amplification from
genomic DNA of the 16S rRNA, narG and napA genomic
DNA from P. aeruginosa PAO1, nirS from P. fluorescens
C7R12, nirK from Ensifer meliloti 1021, and nosZ from
Bradyrhizobium japonicum USDA110. Primers used for
amplification are presented in Table 1. Those primers
have been used for amplification of the 16S rRNA and
denitrification genes from agricultural soils [1,5,23,62,
72], forest soils [4], containers filled with wood by-
products [128], rice paddy field soils [134], grassland
pasture soils [82], soils from the Burgundy region [10],
soil-feeding mounds of nematodes [28], technosols [40],
and constructed wetlands [21].

8.1. Primers, reaction mixture and thermocycler conditions
used for PCR amplification of bacterial standard 16S
rRNA and denitrification genes

The primers used for the amplification of the bacterial stan-
dard for 16S rRNA and narG, napA, nirK, nirS, and nosZ
denitrification genes are shown in Table 1.
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Table 2: Thermocycler conditions for amplification of standard 16S rRNA and denitrification genes by PCR.
Gene
narG, nirK, and nirS napA nosZ 16S rRNA

Stage 1: 1 cycle 10 min at 95 °C 10 min at 95 °C 10 min at 95 °C 10 min at 95 °C

Stage 2: 6 cycles with
1 °C decrease by cycle

15 s at 95 °C 15 s at 95 °C 15 s at 95 °C
30 s at 63 °C 30 s at 61 °C 30 s at 65 °C
30 s at 72 °C 30 s at 72 °C 30 s at 72 °C

Stage 3: 35 cycles
15 s at 95 °C 15 s at 95 °C 15 s at 95 °C 15 s at 95 °C
30 s at 58 °C 30 s at 56 °C 30 s at 60 °C 30 s at 60 °C
30 s at 72 °C 30 s at 72 °C 30 s at 72 °C 30 s at 72 °C

Stage 4: 1 cycle 10 min at 72 °C 10 min at 72 °C 10 min at 72 °C 10 min at 72 °C

Reaction mixture for PCR-amplification of standard 16S
rRNA and denitrification genes:

(1) 1 to 5 ng template DNA (either 16S rRNA, narG, napA,
nirS, nirK, or nosZ).

(2) 0.6µmol forward primer for each gene.
(3) 0.6µmol reverse primer for each gene.
(4) PCR buffer 1X (2.5µL).
(5) 1.5 mmol MgCl2.
(6) 0.4 mM dNTPs.
(7) 0.04 U high fidelity Taq polymerase.
(8) Add up to 25µL MQ/ultrapure water.

The thermocycler conditions for PCR-amplification of
denitrification genes are shown in Table 2.

After amplification, the PCR products were elec-
trophoresed on agarose gels to check size and purity of
amplicons, purified using any appropriate commercial
kit, and cloned in pGEM-T Easy vector (Promega)
following manufacturer’s instructions. Plasmids were used
to transform Escherichia coli JM109. The presence of the
insert in the plasmid can be verified by PCR using T7 and
Sp6 primers and further sequencing of the corresponding
DNA fragments. DNA sequences will 100% match the
corresponding sequences of each denitrification gene.
Care should be taken to remove the DNA sequences
corresponding to the polylinker regions of the plasmid,
which are also amplified.

8.2. Calculation of the copy number of standard DNA

Recombinant pGEM-T easy plasmid containing insert
DNA can be linearized using the restriction enzyme SalI.
Because other enzymes can be used to linearize the pGEM-
T Easy vector, the existence of a unique cutting site in
the DNA sequence can be checked by using the web site
http://www.bioinformatics.org/sms2/rest digest.html in the
Sequence Manipulation Suite Program. After digestion, use
any appropriate commercial kit to purify DNA. Then deter-
mine DNA concentration (ng/µL) by spectrophotometry
as indicated above. To calculate the molecular weight of a
DNA fragment, use the formula MW (ng/mol) = bp number
×660 g/mol× 109 ng/g, where MW is the DNA molecular
weight, bp is the number of base pairs (nucleotides) in the

double stranded DNA, and 660 is the molecular weight
of 1 base pair. Then the molarity (M) of standard DNAs
can be calculated as M (mole/µL) = DNA concentration
(ng/µL)/MW (ng/mol). Since 1 mol of any DNA contains
6.023×1023 molecules (Avogadro’s number), then the DNA
copy number can be calculated as follow: copy number/µL
= M (mol/µL)×6.023×1023 copies/mol.

It is recommended to prepare a stock of standard DNAs
in 25-µL aliquots containing 0.5 × 108 copies/µL. Keep
them at −20 °C until use. Avoid repeated freezing/thawing
of the aliquots.

9. Inhibition test

During environmental DNA extraction, humic acids,
organic and phenolic compounds, glycogen, fats, Ca2+

ions, heavy metals, detergents, antibiotics, and constituents
of bacterial cells can be co-extracted [130]. Because
quality of the template DNA is one of the most important
determinants of the sensitivity, accuracy and reliability of
any PCR [75], care should be taken to avoid the presence
of inhibitory compounds in the extracted DNA solution.
Three potential mechanisms could inhibit PCRs: binding of
the inhibitor to the polymerase, interaction of the inhibitor
with the DNA, and interaction with the polymerase during
primer extension. As a result, significant reductions in the
sensitivity and kinetics of PCR assays can be produced.
In addition, for statistical comparisons among samples, a
similar PCR efficiency is required [3].

qPCR is currently the method of choice to test the pres-
ence of inhibitory compounds in DNA from an environmen-
tal sample [76]. During qPCR, inhibition can be detected by
changes in (a) the efficiency of the reaction, (b) the melt-
ing curve due to modifications of the PCR product, (c) the
relative amounts of the PCR product due to the different
inhibition levels.

Moreover, bacteriophage T4 gene 32 protein (T4gp32)
can be used to limit the PCR inhibition and enhance the PCR
amplification by stabilization of the single-stranded DNA.

The absence of PCR inhibitors in the soil DNA extracts
can be analyzed by mixing a known amount of standard
DNA. Because this standard DNA is supposed not to
be targeted in the environmental sample, the linearized

http://www.bioinformatics.org/sms2/rest_digest.html
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Table 3: Thermocycler conditions for qPCR inhibition test.
Stage 1∗: 1 cycle 10 min at 95 °C

Stage 2∗: 35 cycles

15 s at 95 °C
30 s at 55 °C
30 s at 72 °C
30 s at 80 °C (data collection step)

Stage 3∗∗: dissociation stage
(melting curve: 30 cycles
with 0.5 °C increase by cycle)

15 s at 95 °C
15 s at 80 °C
15 s at 95 °C

∗Times and temperatures should be set according to the man-
ufacturer’s instructions. Values in Table 3 have been employed
successfully with different buffers.
∗∗Dissociation curves can be established by each laboratory. Values
in Table 3 are widely used.

pGEM-T easy vector without insert can be used for this
purpose with environmental DNA. Then the standard DNA
can be amplified by qPCR using universal primers SP6 and
T7 as described earlier [46]. A typical inhibition test can be
run as follows.

9.1. Reaction mixture for inhibition test

(1) 2 ng template (environmental) DNA
(2) 1 × 107 copies of SalI-digested pGEM-T Easy vector

(without insert)
(3) 1µM T7 primer
(4) 1µM Sp6 primer
(5) 250 ng T4 Gp32
(6) 7.5µL SYBR Green PCR buffer 2X (containing HotStar

Taq polymerase and dNTPs)
(7) Add MQ/ultrapure water up to 15µL.

In separate wells, add (a) standard DNA and template
DNA, (b) standard DNA without template DNA, and (c)
qPCR control without any DNA. Add eventually mastermix.
Utilization of SYBR Green PCR buffer is recommended
over preparation of a mixture containing each reaction
component prepared independently. Keep at 4 °C until use
(according to manufacturer’s instructions). Mix the plate
then centrifuge before qPCR.

9.2. qPCR conditions for inhibition test

Thermocycler conditions are shown in Table 3.

10. Gene quantification by qPCR

10.1. Reaction mixture for qPCR

(1) 2 ng template (environmental) DNA
(2) 1µM forward primer for 16Sr RNA and 2µM for deni-

trification genes
(3) 1µM forward primer for 16Sr RNA and 2µM for deni-

trification genes
(4) 250 ng T4 Gp32
(5) 7.5µL SYBR Green PCR buffer 2X (containing HotStar

Taq polymerase, buffer and dNTPs)
(6) Add MQ/ultrapure water up to 15µL.

10.2. Preparation of a standard DNA curve
For quantification of environmental DNA, construction of a
standard curve is required. For that purpose, prepare serial
decimal dilutions ranging from 0.5×107 copies/µL to 0.5×
102 copies/µL from the stock of standard DNAs samples.
Take 2µL from each of the 6 DNA dilutions and use them
independently as template DNA to run qPCRs. Final DNA
copy numbers for each run should go from 1× 107 copies
to 1× 102 copies. In separate wells, add reaction mixture
without any DNAs.

10.3. External DNA controls
In qPCR, external DNA controls can be genomic DNA
isolated from denitrifying bacteria. External DNA for the
16S rRNA, narG, napA, and nirS genes have been isolated
from P. aeruginosa PAO1; nirK and 16S rRNA from E.
meliloti 1021; and 16S rRNA, napA, and nosZ genes
from B. japonicum USDA110. Since those genomes were
completely sequenced, their size and the copy number of
the targeted gene per genome are known. These data allow
determining the expected copy number of the targeted gene
per unit of weight (e.g., copy number per ng of genomic
DNA). These samples can then be used to assess the
reliability of the assay. A usual copy number for external
DNA controls is 1×107.

10.4. Thermocycler conditions for bacterial 16S rRNA and
denitrification genes

Thermocycler conditions for bacterial 16S rRNA and
narG, napA, nirK, nirS, and nosZ denitrification genesare
presented in Table 4.

Utilization of SYBR Green PCR buffer is recommended
over preparation of a mixture containing each reaction
component prepared independently. Keep at 4 °C until use
(according to the manufacturer’s instructions). Mix the plate
then centrifuge before qPCR. New standard dilutions should
be prepared for each reaction curve.

After qPCR, for each sample, the software of the q-PCR
thermocycler will retrieve values of fluorescence intensity
throughout the amplification cycles. At a certain cycle, the
fluorescence intensity crosses over a level where the amplifi-
cation enters a logarithmic growth phase. This cycle is called
the quantitative (Cq). This value is inversely proportional to
the log value of the initial DNA concentration in the reaction
mixture. During qPCR, keep track on the background,
exponential amplification, linear amplification, and plateau
of each curve. Finally, a standard curve is drawn by plotting
the Cq value of each standard DNA against the tenth log
of the DNA initial copy numbers in each reaction mixture.
Because data values involved in the construction of the curve
contribute to the final quantification of the environmental
sample, the following descriptors of the curve should
be reported: the amplification efficiency (E), the linear
regression coefficient (r2), and the y-intercept. Once the
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Table 4: Thermocycler conditions for quantification of 16S rRNA and denitrification genes by qPCR.
Genes
narG, nirK, and nirS napA nosZ 16S rRNA

Stage 1∗: 1 cycle 10 min at 95 °C 10 min at 95 °C 10 min at 95 °C 10 min at 95 °C

Stage 2∗: 6 cycles with 1 °C decrease by cycle

15 s at 95 °C 15 s at 95 °C 15 s at 95 °C
30 s at 63 °C 30 s at 61 °C 30 s at 65 °C
30 s at 72 °C 30 s at 72 °C 30 s at 72 °C
30 s at 80 °C 30 s at 80 °C 30 s at 80 °C
(data acquisition) (data acquisition) (data acquisition)

Stage 3∗: 35 cycles

15 s at 95 °C 15 s at 95 °C 15 s at 95 °C 15 s at 95 °C
30 s at 58 °C 30 s at 56 °C 30 s at 60 °C 30 s at 60 °C
30 s at 72 °C 30 s at 72 °C 30 s at 72 °C 30 s at 72 °C
30 s at 80 °C 30 s at 80 °C 30 s at 80 °C 30 s at 80 °C
(data acquisition) (data acquisition) (data acquisition) (data acquisition)

Stage 4∗∗: dissociation stage (melting curve:
30 cycles with 0.5 °C increase by cycle)

15 s at 95 °C 15 s at 95 °C 15 s at 95 °C 15 s at 95 °C
15 s at 80 °C 15 s at 80 °C 15 s at 80 °C 15 s at 80 °C
15 s at 95 °C 15 s at 95 °C 15 s at 95 °C 15 s at 95 °C

∗Times and temperatures should be set according to the manufacturer’s instructions. Values in Table 4 have been employed successfully with
different buffers.
∗∗Dissociation curves can be established by each laboratory. Values in Table 4 are widely used.

standard curve has been obtained, the copy numbers of each
DNA sample can be calculated by interpolation of the Cq

values in the standard curve. Export the data set to a spread
sheet application and run appropriate statistical analyses.

When running inhibition tests, absence of inhibition is
considered when differences in Cq values are ± 1 cycle.
Should inhibition be detected, repurification of the sample
DNA is required.

11. Other primers for qPCR

Several research groups have developed different sets of
primers for qPCR amplification of the bacterial 16S rRNA
and denitrifying genes (Table 5). Accumulation in the
databank of complete sequences from bacterial genome
projects and from newly isolated denitrifying bacteria will
help to design and increase sensitivity or new denitrification
primers.

Table 5: Other primers used for PCR amplification of bacterial standard 16S rRNA and denitrification genes.
Primer Primer sequence (5′-3′) Target gene Reference

519F GWATTACCGCGGCKGCTG
16S rRNA [116]

907R CCGTCAATTCMTTTRAGTTT
1055f ATGGCTGTCGTCAGCT

16S rRNA [19]
1392r ACGGGCGGTGTGTAC
1960m2f TAYGTSGGGCAGGARAAACTG

narG [59]
2050m2r CGTAGAAGAAGCTGGTGCTGT
narG328f GACAAACTTCGCAGCGG

narG [92]
narG497r TCACCCAGGACGCTGTTC
V16 GCNCCNTGYMGNTTYTGYGG

napA [126]
V17 RTGYTGRTTRAANCCCATNGTCCA
F1aCu ATCATGGTSCTGCCGCG

nirK [29]
R3Cu TTGGTGTTRGACTAGCTCCG
nirK517F TTYGTSTAYCACTGCGCVCC

nirK [16]
nirK1055R GCYTCGATCAGRTTRTGGTT
nirS263F TGCGYAARGGGGCANCBGGCAA

nirS [16]
nirS950R GCBACRCGSGGYTCSGGATG
nirS2F TACCACCCSGARCCGCGCGT

nirS [19]
nirS3R GCCGCCGTCRTGVAGGAA
nirSsh2F ACCGCCGCCAACAACTCCAACA

nirSPm
1 [44]

nirSsh4R CCGCCCTGGCCCTGGAGC
forward ACAAGGAGCACAACTGGAAGGT

nirSPs
2 [39]

reverse CGCGTCGGCCCAGA
cnorBPF CATGGCGCTGATAACGGG

cnorBP
3 [24]

cnorBPR CTTIACCATGCTGAAGGCG
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Table 5: To be continued.
Primer Primer sequence (5′-3′) Target gene Reference

cnorBBF AIGTGGTCGAGAAGTGGCTCT
cnorBB

4 [24]
cnorBBR TCTGIACGGTGAAGATCACC
nirS263F TGCGYAARGGGGCANCBGGCAA

nirS [16]
nirS950R GCBACRCGSGGYTCSGGATG
nosZ1F WCSYTGTTCMTCGACAGCCAG

nosZ [44]
nosZ1R ATGTCGATCARCTGVKCRTTYTC
Forward AGAACGACCAGCTGATCGACA

nosZ [19]
Reverse TCCATGGTGACGCCGTGGTTG
nosZ-F-1181 CGCTGTTCITCGACAGYCAG

nosZ [60]
nosZ-R-1880 ATGTGCAKIGCRTGGCAGAA

1nirS gene from populations of P. mandelii and related species (nirSPm-bearing communities).
2nirS gene from populations of P. stutzeri and related species (nirSPs-bearing communities).
3norB gene for populations of P. mandelii and closely related strains (cnorBP-bearing communities).
4norB gene for populations of Bosea, Bradyrhizobium, and Ensifer spp. (cnorBB-bearing communities).

Using the new set of primers, nosZ-II-F (CTIGGICCIY-
TKCAYAC) and nosZ-II-R (GCIGARCARAAITCBGTRC)
[52], a much larger diversity than that previously reported
for bacterial and archaeal populations carrying a nosZ gene
has been detected [36,53]. Quantification of the new nosZ-
II population in different environmental samples revealed
that its relative abundance is similar to that found when the
conventional nosZ primers (Table 1) were used.
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and F. Martin-Laurent, Evidence for shifts in the structure and
abundance of the microbial community in a long-term PCB-
contaminated soil under bioremediation, J Hazard Mater, 195
(2011), 254–260.
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