¿Cuales son los artículos científicos más relevantes sobre gestión de residuos?

Un estudio reciente ha publicado la relación de las principales revistas científicas que publican trabajos sobre gestión de residuos. Entre ellas destacan revistas tan importantes como Waste Management, Resources Conservation & Recycling, Journal of Cleaner Production, Bioresource Technology o Environmental Science & Technology. Dicho trabajo también recopila los trabajos más relevantes sobre la temática. Dos de ellos son españoles, concretamente del Centro de Edafología y Biología Aplicada del Segura, un centro del Consejo Superior de Investigaciones Científicas (CSIC).

España en el Top 10 de la ciencia del reciclaje

Un estudio reciente ha revisado la literatura científica publicada en los últimos años sobre la gestión de residuos. En el Top 10 de países con más relevancia científica en esta temática están EEUU, China, Japón, Italia, India, España, Reino Unido, Brasil, Taiwan y Canadá. La mayoría de países incrementa su …

Compostaje con bolsas de aire

Acaba de publicarse un trabajo sobre compostaje de biorresiduos que me ha resultado muy ingenioso. Han diseñado un reactor en el que han colocado una bolsa de plástico en la parte superior para controlar la atmósfera de la mezcla y la oxigenación del proceso. De esta manera consiguen mejorar el proceso y medir la emisión de gases de interés como el amonio.

Lo que está claro es que en ciencia hay que tener imaginación y conocimientos de manualidades.

¿Para quién escriben los científicos?

Publicar un artículo científico es uno de los principales logros de un investigador. Es la culminación de muchos años de trabajo y es cuando su investigación empieza a ser relevante para la comunidad científica. Empieza el proceso de ser alabado o criticado, de alcanzar el Olimpo o el Inframundo, o de simplemente pasar desapercibido…  Aunque existe una metodología muy definida para escribir un trabajo científico, hay un factor que rara vez se tiene en cuenta cuando nos encontramos en el momento de plasmar en palabras y gráficas, nuestras teorías científicas: el lector.

Método Takakura para compostar en casa… o en el trabajo

Como dijimos en una entrada anterior, los residuos domésticos (también llamados biorresiduos) son una fuente de materia orgánica muy interesante para hacer compost. Por desgracia, no se aprovechan adecuadamente ya que durante su gestión se mezclan con otros materiales obteniendo al final compost de calidad media-baja. Este problema en parte se podría se solucionar al separarlos en origen usando el quinto contenedor, al cual estamos obligados por ley en España (FEMP, 2010). Otra cosa que mencionamos es que el compostaje descentralizado o a pequeña escala es eficaz para reducir de forma significativa el volumen de estos residuos, con el consiguiente ahorro económico y ambiental. Para hacer compost en casa (compostaje doméstico) discutimos las características de los compostadores eléctricos, unos pequeños electrodomésticos que permiten transformarlos en un corto tiempo y en un espacio reducido. Hoy hablaremos de su versión analógica, basada en el compostaje en cajones mediante el método Takakura.

Reciclando en casa con compostadores automáticos. ¿Realmente funcionan?

Y es que la falta de calidad de los compost junto al elevado coste de su tratamiento, han motivado la aparición de alternativas a la gestión centralizada de los residuos municipales. Algunos ejemplos son el compostaje doméstico y comunitario, que muchos municipios fomentan a través de la Red Estatal Composta en Red (www.compostaenred.com). Otra alternativa menos implantada pero cada vez más importante es el uso de compostadores automáticos o eléctricos, pequeños electrodomésticos que permiten a las familias gestionar sus propios residuos en casa.

El viroma del compostaje

El principal destino del compost siempre es el suelo, ya sea como abono, sustrato de cultivo o como enmienda. Por eso, es imprescindible controlar y optimizar el proceso de compostaje para obtener compost de alta calidad, exento de contaminantes físicos, químicos e incluso microbiológicos. Aunque existe legislación que define las propiedades mínimas necesarias de un compost según su uso, los criterios biológicos requeridos son escasos. Por contra, cada vez hay más certeza de que la microbiota del compost es una pieza clave de su funcionalidad, tanto como fertilizante, bioestimulante o como también de control microbiano de patógenos. Una alta diversidad de hongos, bacterias y también de virus, es imprescindible para que el compost sea una fuente de materia orgánica activa beneficiosa, que interaccione positivamente con la planta y con el suelo, mejorando la calidad biológica de este.

La relación entre el área y el volumen de un compostador afecta a la disipación del calor

La temperatura de un compost es un indicador de la actividad microbiana del proceso. Debe mantenerse en valores termófilos durante el mayor tiempo posible para así asegurar la correcta higienización del material. Las dimensiones de las pilas de compostaje afectan directamente a la disipación de la energía calorífica generada durante la fase termófila, siendo esto crucial cuando se trabaja con compostadores de pequeñas dimensiones (< 1000L), los cuales raramente mantienen temperaturas elevadas a lo largo del tiempo.

La simbiosis entre rizobios y leguminosas mejora la adaptación de las plantas a suelos contaminados por cobre

Como ya comentamos en un artículo anterior, la concentración de cobre presente en el suelo es cada vez mayor. Las fuentes principales de este metal son el uso de fungicidas con cobre, como los aplicados a cultivos leñosos como la vid o el olivo, y la aplicación de lodos de depuradora, estiércoles o purines de cerdo como fertilizantes orgánicos. También es importante la actividad minera, aunque su influencia está limitada a la cercanía geográfica de las minas, reduciéndose considerablemente su efecto con la distancia. La presencia en exceso de este metal afecta negativamente a los cultivos, inhibiendo su tasa de crecimiento e induciendo un estrés oxidativo severo.